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Abstract

In this study, we introduce a numerical method to reduce the original trans-
port equations into a reduced form that can replicate the behavior of the
original model. The basic idea is to collect an ensemble of data of state vari-
ables (say, solute concentration), called snapshots, by running the original
model, and then use the proper orthogonal decomposition (POD) techniques
(or the Karhunen-Loeve decomposition) to create a set of basis functions
that span the snapshot collection. The snapshots can be reconstructed using
these basis functions. The solute concentration at any time and location in
the domain is expressed as a linear combination of these basis functions, and
a Galerkin procedure is applied to the original model to obtain a set of or-
dinary differential equations for the coefficients in the linear representation.
The accuracy and computational efficiency of the reduced model have been
demonstrated using several one-dimensional and two-dimensional examples
with variable permeability field Ks and sorption coefficient Kd.

Key words: Model reduction, solute transport, proper orthogonal
decomposition

1. Introduction1

Accurate predictions of radionuclide transport in general come from pro-2

cess models, which are defined as detailed flow and contaminant transport3

model that best replicate the available data for a site. They usually are the4

most complex and sophisticated models of flow and transport at a particular5
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site. A significant technical issue arises when one tries to use those model6

results in probabilistic systems modeling: it is impractical to directly solve7

the computationally intensive model for each Monte Carlo realization that8

would be necessary to properly span the range of uncertainty for every model9

parameter.10

On contrast to process models, systems models have been proposed to11

represent complex process models with simplified models that are suitable12

for Monte Carlo analysis. Systems models incorporate streamlined versions13

of one or more process models, along with uncertain estimates of the contam-14

inant source term. Systems models integrate knowledge of all of the processes15

relevant to assessing risk, and therefore are critical to support remedies or de-16

cisions to monitor groundwater. Process models synthesize knowledge of one17

component of the transport path; the systems models integrate knowledge of18

all aspects of contaminant transport.19

The groundwater pathway in the systems model should be an abstraction20

model that we believe captures the essential features of the groundwater pro-21

cess model, although there is a risk that the simplification process will filter22

out something important. When the groundwater pathway is simulated in23

a process model, it is generally not practical to embed the entire model in24

the systems model - computational limitations intercede. Consequently, we25

often settle for one or a few simplified models. These simplified models are26

called abstraction models. Within these simplified or other types of transport27

modules, parameters that can be varied in a probabilistic analysis include the28

groundwater velocity, dispersion coefficient, and sorption parameters. In the29

best case, the process model is used to justify these parameter distributions,30

but often this is not done in great detail due to the complexity of the process31

models and the lack of a convenient tool to formally abstract the process32

model results. The result may be a systems model that does not fully con-33

sider, or indeed even contradicts, one or more of the process models. The34

credibility of the systems model is placed in jeopardy when this happens.35

If an efficient and accurate model abstraction procedure can be imple-36

mented for groundwater contaminant transport, we largely avoid the issue of37

justifying the validity of our abstraction model: the original process model38

is effectively incorporated in the systems model. Alternatively, if a model-39

ing analysis stops short of systems analysis, the reduced model can still be40

used to explore uncertainties much more efficiently, thereby allowing better41

sensitivity analyses to be conducted.42

To date, methods for proceeding from complex process models to simpli-43
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fied systems models have not been formally determined or defined. In this44

study a method is being developed to obtain efficient and accurate reduced45

models, alternatively referred to as abstraction models. The technique, called46

the proper orthogonal decomposition (POD), also known as principal compo-47

nent analysis or Karhunen-Loeve expansion, uses the results from a process48

model as “data” that provides the basis for a reduced model. The procedure,49

in general terms, calls for the running of the process model, in this case a50

contaminant transport simulation, forward in time, recording ”snapshots”51

of contaminant concentration. The mathematical technique transforms the52

results into a set of basis functions that span the behavior of the trans-53

port problem throughout the model domain. The reduced model is then54

constructed by assuming that the solution of the transport problem can be55

formulated as a linear combination of the basis functions. A Galerkin proce-56

dure using the basis functions results in a small set of ordinary differential57

equations that are solved in time.58

There are a variety of applications in various fields of science for which59

this technique has been applied. For example, researchers in the field of fluid60

dynamics have used POD methods to discern so-called coherent structures61

within a turbulent flow field [Berkooz et al., 1993], and to characterize the62

spatio-temporal patterns in two-phase, fluidized bed reactors [Cizmas et al.,63

2003]. Due to the need for compact models suitable for integration into64

process control systems, the techniques have been applied to the modeling65

of non-linear heat transfer [Park and Cho, 1996], natural convection [Ly and66

Tran, 1999], and transport of chemicals in chemical vapor deposition (CVD)67

reactors [Newman, 1996b; Ly and Tran, 1998]. In the field of groundwater68

hydrology and reservoir engineering, techniques to develop reduced models69

have been explored [Markovinovic et al., 2002; Hejin et al., 2003; Vermeulen70

et al., 2004], although these applications focus on fluid flow rather than71

contaminant transport.72

An excellent summary of the underpinning theoretical development of73

POD is presented by Newman [1996a], and several of the aforementioned74

references contain detailed descriptions of the implementation of the POD75

technique. Of greatest relevance in the present study are the CVD model76

studies [Newman, 1996b; Ly and Tran, 1998]. In these models, fluid flow77

(a carrier gas) is assumed to be at steady state, and a reacting chemical78

species is transported in the fluid. Except that the flow is compressible in79

the CVD case, this is analogous to the problem of chemical transport in80

groundwater. Thus, although the POD technique has not been developed81
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for contaminant transport in groundwater, the scope of work required to82

develop this capability is reasonably constrained due to this previous work.83

2. Transport Equations84

The governing equation for transport of a single solute in porous media85

can be written as [Zyvoloski et al., 1997]86

∂(φSlρlC)

∂t
= ∇ · [φSlD∇(ρlC)] −∇ · (ulρlC) − ρr

dCr

dt
+ q, (1)87

subject to an initial condition C(x, 0) = C0(x) and appropriate boundary88

conditions. Here φ is the porosity, Sl is the liquid saturation, ρl is the liquid89

density, C is the solute concentration, D is the dispersion tensor, ul is the90

Darcy velocity, Cr represents the adsorption of the solute onto the porous91

media, ρr∂Cr/∂t is an equilibrium sorption term, and q is sources or sinks. All92

parameters in (1) can be space-dependent, but for simplicity the coordinate93

x = (x1, x2, x3)
T has been suppressed. The general equilibrium model for94

adsorption of species onto the porous media is given by [Polzer et al.,1992]:95

Cr =
α1C

β
l

1 + α2C
β
l

, (2)96

where α1, α2, and β are parameters defining different sorption-isotherm mod-97

els. In this study, the linear isotherm model (α1 = Kd, α2 = 0, and β = 1)98

is used: Cr = KdCl, where Kd is the partition or distribution coefficient.99

If we assume that flow is in saturated porous media at the steady state100

condition, it follows that that ρl, D, and ul are independent of time and101

Sl ≡ 1. We may also assume that ρl is a constant. In this case, (1) can be102

simplified as103

∂C

∂t
=

ρl

φρl + ρrKd

{∇ · [φD∇(C)] −∇ · (ulC) + q} . (3)104

This is the full model we deal with in this study. Given appropriate initial and105

boundary conditions, as well as other parameter fields such as permeability,106

one can first solve for the velocity field and then the concentration field from107

(3).108
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3. Proper Orthogonal Decomposition (POD)109

Let Ci(x) = C(x, ti), i = 1, Ns, denote a set of Ns observations (or110

snapshots) of a state variable (in this case, solute concentration) observed or111

simulated from the full model run at time ti, i = 1, Ns. The basic idea of112

the POD method is to find function ψ(x), called basis functions, that have a113

structure typical of the members of the ensemble Ci(x). The basis functions114

are chosen to give the best representation of the ensemble of snapshots, which115

maximizes116

1

Ns

Ns∑

i=1

|(Ci(x), ψ(x))|2/(ψ(x), ψ(x)), (4)117

where (Ci, ψ) is the inner product of the basis function ψ and the concentra-118

tion field Ci. It can be shown that the basis functions can be expressed as a119

linear combination of snapshots [Newmana, 1996]:120

ψn(x) =

Ns∑

k=1

fknCk(x), k = 1, Ns, (5)121

where fkn is the kth component of the nth eigenvector of the kernel K that122

is computed from123

Kij =
1

Ns

∫

Ω

Ci(x)Cj(x)dx. (6)124

By equation (5), each snapshot can be reconstructed exactly using these basis125

functions as126

Ck(x) =

Ns∑

i=1

fkiψi(x). (7)127

To summarize, for a given ensemble of Ns snapshots, one first computes the128

kernel K from (6) and solves the eigenproblem Kf = λf , which gives Ns129

eigenvalues λn, i = 1, Ns, sorted from largest to smallest, and their cor-130

responding eigenfunctions fn(x), i = 1, Ns. The basis functions are then131

computed from (5) and any snapshot can be reconstructed using (7). Since132

the matrix K is real, symmetric and positive semi-definite, all eigenvalues133

are non-negative. The importance of the nth eigenfunction depends on its134

relative “energy”, characterized by the ratio of the nth eigenvalue to the sum135

of all eigenvalues (total energy): λn/
∑Ns

i=1
λi. In many cases, the first few136

eigenvalues carry most of the total energy and thus concentration C(x) in137

(7) can be approximated by truncating the first M terms (M << Ns).138
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To find the spatial distribution of concentration at a time that is not in139

the ensemble of snapshots, one has to solve for the coefficients in (7). In the140

following section, a reduced model is introduced, in which ordinary differ-141

ential equations for these coefficients are derived from the original (partial142

differential) transport equations.143

4. Reduced Model144

Suppose that the full model (3) is solved to obtain a set of snapshots of145

the concentration distribution C(x, ti), i = 1, Ns. Based on the algorithm146

described in the previous section, one can find a set of basis functions ψi(x),147

i = 1, Ns. Then a Galerkin’s method can be employed by seeking an approx-148

imation of concentration C(x, t) as149

Ĉ(x, t) =

M∑

m=1

am(t)ψm(x), (8)150

where M < Ns, and am(t) are time-varying coefficients that are indepen-151

dent of spatial locations. The physical mean of (8) is that the concentra-152

tion field is approximated by a linear combination of some pre-determined,153

space-dependent “structures” weighted by time-dependent coefficients. Since154

Ĉ(x, t) in (8) is an approximation of the true concentration, replacing C(x, t)155

in the full model, i.e., transport equation (3), by Ĉ(x, t) will in general pro-156

duce a model error. In the Galerkin’s method, this error is forced to be157

orthogonal to all these basis functions, i.e.,158

∫

Ω

[
∂Ĉ

∂t
− ρl

φρl + ρrKd

{
∇ ·

[
φD∇Ĉ

]
−∇ · (ulĈ) + q

}]
ψi(x)dx = 0, (9)159

for i = 1,M . Here the orthogonality of two functions f(x) and g(x) is160

defined as
∫
Ω
f(x)g(x)dx = 0. Substituting (8) into (9) and recalling the161

orthogonality of basis functions yield162

dai(t)

dt
=

M∑

j=1

aj(t)
ρl

φρl + ρrKd

∫

Ω

{∇ · [φD∇(ψj(x))] −∇ · [ulψj(x)]}ψi(x)dx

+

∫

Ω

q(x, t)ψi(x)

φρl + ρrKd

dx, (10)

6



which can be written in a matrix form as163

dA(t)

dt
= B A(t) +Q(t), (11)164

where A = (a1, a2, · · · , aM)T , matrix B = (bij)M×M and vector Q = (qi)M×1165

are defined as166

bij =
ρl

φρl + ρrKd

∫

Ω

{∇ · [φD∇(ψj(x))] −∇ · [ulψj(x)]}ψi(x)dx, i, j = 1,M,

(12)167

and168

qi(t) =
1

φρl + ρrKd

∫

Ω

q(x, t)ψi(x)dx, i = 1,M. (13)169

The initial condition for (11) is derived from the original initial condition170

C(x, t) = C0(x),171

ai(0) =

∫

Ω

C(x, 0)ψi(x)dx, i = 1,M. (14)172

Thus the partial differential equation (PDE) has been reduced to a system173

of M ordinary differential equations (ODE). Provided that M is fairly small,174

the reduction in computational time should be significant compared to the175

numerical solution of the PDE in the original model.176

5. Illustrative Examples177

In this section, several examples are presented to illustrate how the model178

reduction techniques can significantly reduce computational efforts in solute179

transport in porous media, while retaining accuracy. This is accomplished by180

comparing results from the reduced models against those from the full model181

runs. Note that, in solving the full model numerically, it is quite often that182

numerical errors may be introduced. To avoid this, in the first two examples,183

simple one-dimensional transport problems were chosen because analytical184

solutions for these simple cases are available, which made it easy to assess185

the accuracy of the reduced model.186
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5.1. One-dimensional solute transport with linear sorption187

In the first example, we consider a one-dimensional transport problem in a188

saturated column of 1m in length, uniformly discretized into 200 elements.189

The hydraulic conductivity is a constant Ks = 1.0 m/day for the entire190

column, and the flow is driven by a hydraulic gradient of dh/dx = 0.001,191

which produces a uniform flow with Darcy velocity of 1.1813 × 10−8 m/s.192

Other transport parameters are given as: the dispersivity coefficient αL =193

0.03333 m, partition coefficient Kd = 0.1, water density ρl = 1000.0 kg/m3,194

rock density ρr = 2500 kg/m3, and porosity φ = 0.25. Under the given195

initial condition C(x, 0) = 0, a fixed concentration C(x, t) = 1.0 at the inlet196

(x = 0), and a zero concentration gradient ∂C(x, t)/∂x = 0 at x = ∞, this197

problem can be solved analytically [Batu, 2006]:198

C(x, t) =
1

2
erfc

[
x− vt/R√
4αLvt/R

]
+

1

2
exp

(
x

αL

)
erfc

[
x+ vt/R√
4αLvt/R

]
, (15)199

where R = 1 + ρrKd/(φρl) is the retardation factor, and erfc is the comple-200

mentary error function. Twenty-five concentration snapshots are computed201

using (15) at time t = n∆t, where ∆t = 20 days and n = 1, 25. Some202

selected snapshots are illustrated in Figure 5.203

Using these 25 snapshots, the kernel K is computed from (6), and the204

eigenvalues and eigenfunctions associated with this kernel are solved from205

Kf = λf . These eigenvalues and eigenfunctions depend significantly on the206

choice of snapshots. It is critical that each snapshot be significantly different207

from all others. The eigenvalues for this set of snapshots are depicted in208

Figure 5.1. The figure indicates that the first eigenvalue carries about 91%209

of the total energy and the first 6 eigenvalues carry more than 99.99% of210

the total energy. The ratio of the accumulative energy to the total energy211

is a measure that can be used to determine the number of modes needed to212

achieve a given accuracy.213

The first few basis functions are illustrated in Figure 5.1. It is seen214

from the figure that the magnitude of the first basis function is much larger215

than that of other basis functions. In addition, the magnitude decreases216

as the mode number increases, which makes it possible to approximate the217

concentration field using only a few terms rather than Ns(= 25) terms.218
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Based on these basis functions, all snapshots can be reconstructed using219

(7). Comparisons of the true snapshots and reconstructed snapshots indicate220

that at most 6 basis functions are enough to reconstruct these snapshots221

with sufficient accuracy. Of course, in general, the number of basis functions222

required to obtain an accurate solution will depend on the parameters (Ks,223

αL, and L) in the solute transport problem.224

The spatial distribution of solute concentration at any give time can be225

derived from solving the reduced model. The ordinary differential equation226

(11) with initial condition (14) was solved using the fourth-order Runge-227

Kutta method with a time step of ∆τ = 1000 s. In particular, the ensemble228

of those snapshots can be solved from the reduced model (rather than recon-229

structed from (7)). Four selected concentration distributions computed from230

the reduced model, as functions of the number of basis functions included,231

are illustrated in Figure 5.1. Also plotted in the figure is the true (exact)232

solution from (15). The figure clearly shows that the accuracy of the esti-233

mated concentration distribution depends on the number of basis functions234

included. For this example, including 10 basis functions is enough to produce235

very accurate results as compared to the exact solutions.236

It is interesting to investigate how well the reduced model can predict237

the concentration distribution at an elapsed time that is different from those238

times at which the ensemble of snapshots are taken. Figure 5.1 compares239

the concentration profiles at time t = 75 and 525 days computed from the240

analytical solution and those solved from the reduced model with 15 basis241

functions. Note that t = 525 days is larger than the maximum time of all242

snapshots used in constructing the reduced model. The comparison in the243

figure demonstrates that the reduced model can repreduce the true solution244

accurately.245

5.2. One-dimensional transport with pulse input246

In the second example, all transport parameters are the same as in the pre-247

vious example except that (1) the partition coefficient Kd is zero in this case,248

and (2) instead of a fixed constant concentration at the inlet (x = 0), a unit249

pulse input is imposed at the inlet for a duration of 5 days. For this simple250
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case, analytical solution is also available [Batu, 2006]251

C(x, t) =
1

2
erfc

[
x− vt√
4αLvt

]
+

1

2
exp

(
x

αL

)
erfc

[
x+ vt√
4αLvt

]
252

− 1

2
erfc

[
x− v(t− t0)√
4αLv(t− t0)

]
− 1

2
exp

(
x

αL

)
erfc

[
x + v(t− t0)√
4αLv(t− t0)

]
,(16)253

where t0 is the duration of the pulse input, which starts at zero. Using254

this equation, 25 snapshots were calculated from t = 10 to 250 days at an255

increment of 10 days. Several selected snapshots are illustrated in Figure 5.2.256

Following the POD method, the kernel K was computed from these 25257

snapshots using (6); eigenvalues and eigenfunctions were solved from the258

eigenproblem Kf = λf ; and then basis functions were computed using (5).259

The set of eigenvalues as a function of the mode is depicted in Figure 5.2. Un-260

like the previous case where the first eigenvalue carries about 90% of energy,261

in this case the first one has only 40% of energy and the first 8 eigenvalues262

carry about 99.99% energy, which means that more basis functions may be263

required to approximate the solution. This can also be seen from Figure 5.2,264

where the relative magnitudes of the first few eigenfunctions are more or less265

the same, while in the previous example the magnitude of the first eigen-266

function is much larger than that of other eigenfunctions. A larger number267

of required basis functions may be attributed to the fact that the patterns of268

different snapshots are quite different in this example while in the previous269

example all snapshots have a very similar pattern.270

Figure 5.2 compares four snapshots computed from the analytical solution271

and those solved from the reduced model with different numbers of basis272

functions included in the reduced model. It is seen from the figure that the273

reduced model with 10 basis functions is accurate enough. Figure 5.2 shows274

the comparison of concentration profiles at time t = 75 and 275 days derived275

from the analytical solution and those from solving the reduced model with276

10 basis functions. Again, the solutions from the reduced model are nearly277

identical to the true solutions.278
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5.3. Two-dimensional solute transport with heterogeneous permeability and279

sorption coefficients280

In the third example, solute transport is modeled in a two-dimensional rect-281

angular domain of size 1 m×0.5 m, uniformly discretized into 100×50 square282

elements. No-flow conditions are prescribed at two lateral boundaries. The283

hydraulic head is fixed at the left and right boundaries as 10.001m and 10.0m,284

respectively, with a hydraulic gradient J = 0.001. The porous medium is285

heterogeneous in both the hydraulic conductivity Ks and the sorption coeffi-286

cient Kd. It is assumed that the log hydraulic conductivity Y = log(Ks) has287

a normal distribution and is second-order stationary following an isotropic,288

exponential covariance function with a correlation length of 0.3 m. The289

statistics of the log hydraulic conductivity are given as 〈Y 〉 = 0, (i.e., the290

geometric mean of the saturated hydraulic conductivity KG = 1.0 m/day)291

and σ2

Y = 0.693 (coefficient of variation CVKs
= 100%). Figure 5.2a shows292

the log hydraulic conductivity field generated using the sgsim code in GSLIB293

[Deutcsh and Jounel, 1998]. In this case, the velocity field is no longer uni-294

form in the flow domain and has to be solved numerically. The steady-state,295

saturated flow problem was solved using the Finite-Element Heat- and Mass-296

Transfer code (FEHM) developed by Zyvoloski et al. [1997]. This velocity297

field was used as input to the solute transport model.298

For the transport problem, it is assumed that the initial concentration299

is zero in the domain and concentration of C(x, t) = 1.0 is fixed at the300

middle of the upstream boundary, (0.0 m, 0.25 m). It is also assumed the301

log partition coefficient is uncorrelated with the log hydraulic conductivity302

and that ln(Kd) is also second-order stationary field following an isotropic,303

exponential covariance function with a correlation length of 0.3 m. The304

statistics of log(Kd) are given as 〈ln(Kd)〉 = −1.6094, (i.e., the geometric305

mean KG
d = 0.2) and σ2

ln Kd
= 9.95 × 10−3 (coefficient of variation CVKd

=306

10%). The spatial distribution of Kd generated using the sgsim code of307

GSLIB is illustrated in Figure 5.2b. Other transport parameters include308

the longitudinal dispersivity coefficient αL = 0.02 m, and the transverse309

dispersivity coefficient αT = 10−4 m.310

The full transport model was run for 200 days using the FEHM code311

and the concentration distribution was recorded at t = 10n days, where312
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n = 1, 20, and these 20 concentration fields were taken as snapshots for the313

model reduction method. Basis functions were then computed from these314

snapshots using the POD method, and equation (11) with initial condition315

(14) were solved numerically.316

Figure 5.3 compares the spatial distribution of concentration as contour317

maps at two elapsed times, t = 100 days and t = 200 days, derived from318

both the full model run and the reduced model with 5 basis functions. The319

comparison clearly shows that the results from the reduced model can re-320

produce the full model results very well, even for a contour level as low as321

C = 0.01.322

To compare the computational efficiency of these two methods, the CPU323

time required for the full model run was recorded, in which the maximum324

time step was set to 2 days while the actual size of the time step was auto-325

matically adjusted during the solution process by the program itself. For the326

transport problem as described above, the FEHM code takes 23.3 hours. The327

computation time needed for the reduced model depends on the time step328

used in the fourth-order Runge-Kutta method, which is fixed at ∆τ = 1000329

seconds in this case. The CPU time for the reduced model run is only 78330

seconds. Of course, this run time will increase if a small time step was used331

or a great number of snapshots and functions is required. However, the332

comparison of model results from the full model and the reduced model in-333

dicates that the time step of ∆τ = 1000 seconds used in the reduced model334

is small enough for this problem, and the overall comparison indicates that335

the number of snapshots and basis functions were sufficient.336

For the purpose of comparison, an additional example was simulated, by337

setting Kd = 0 in the previous example. In this case, the plume moves338

faster than in the third example. As shown in Figure 5.3, comparison of the339

concentration fields derived from the full model and the reduced model at340

times t = 50 days and t = 100 days also demonstrates that the reduced341

model can reproduce the full model results with a sufficient accuracy.342

6. Conclusions343

In this study, we have demonstrated that the advection-dispersion equa-344

tion can be cast in reduced model form, and a reduced numerical model can345

be developed that replicates the behavior of the original model. We have de-346

rived, from the original model equations, a method for reducing the transport347
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model, a partial differential equation with unknowns at each numerical grid348

point, to a small number of ordinary differential equations solved in time.349

The method consists of running the original model to obtain the snapshots350

of concentration in the model domain, computing the basis functions for the351

model using the POD technique, and using these basis functions in a Galerkin352

procedure to obtain the ordinary differential equations of the reduced model.353

The accuracy and computational efficiency of the reduced model have354

been investigated using several one-dimensional and two-dimensional exam-355

ples with variable permeability field Ks and sorption coefficient Kd. These356

examples demonstrate that the reduced model can reproduce the full model357

results very accurately while the computational time (in terms of the CPU358

time) required for the reduced model is much less than that required for the359

full model.360

References361

[1] Arnold, B. A., S. P. Kuzio, and., B. A. Robinson, 2003. Radionuclide362

transport simulation and uncertainty analyses with the saturated-zone363

site-scale model at Yucca Mountain, Nevada, J. Contam. Hydrol., 62-63,364

401-419.365

[2] Batu, V., 2006. Applied Flow and Solute Transport Modeling in Aquifers:366

Fundamental Principles and Analytical and Numerical Methods, 667pp,367

CRC Press.368

[3] Berkooz, G., P. Holmes, and J. L. Lumley, 1993. The proper orthogonal369

decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech.,370

25, 539-575.371

[4] Cizmas, P. G., A. Palacios, T. O. O-Brien, and M. Syamlal, 2003.372

Proper-orthogonal decomposition of spatio-temporal patterns in flu-373

idized beds, Chem. Eng. Sci., 58, 4417-4427.374

[5] Heijin, T., R. Markovinovic, and J. D. Jansen, 2003. Generation of low-375

order reservoir models using system-theoretical concepts, SPE Paper376

79674, SPE Reservoir Symposium, Houston, Texas.377

13



[6] Polzer, W. L., M. G. Rao, H. R. Fuentes, and R. J. Beckman, Thermody-378

namically derived relationships between the modified Langmuir isotherm379

and experimental parameters, Environ. Sci. and Tech., 26, 1780-1786,380

1992381

[7] Ly, H. V., and H. T. Tran, 1998. Proper orthogonal decomposition for382

flow calculations and optimal control in a horizontal CVD reactor, Re-383

port CRSC-TR98-13, Center for Research in Scientific Computation,384

North Carolina State University, Raleigh North Carolina.385

[8] Ly, H. V., and H. T. Tran, 1999. Modeling and control of physical pro-386

cesses using proper orthogonal decomposition, Report CRSC-TR98-37,387

Center for Research in Scientific Computation, North Carolina State388

University, Raleigh North Carolina.389

[9] Markovinovic, R., E. L. Geurtsen, T. Heijin, and J. D. Jansen, 2002.390

Generation of low-order reservoir models using POD, empirical grami-391

ans, and subspace identification, 8th European Conference on the Math-392

ematics of Oil Recovery, Freiberg, Germany.393

[10] Newman, A. J., 1996a. Model reduction via the Karhunen-Loeve ex-394

pansion Part I: An Exposition, Tech. Report T.R. 96-32, Inst. Systems395

Research.396

[11] Newman, A. J., 1996b. Model reduction via the Karhunen-Loeve expan-397

sion Part II: Some Elementary Examples, Tech. Report T.R. 96-33, Inst.398

Systems Research.399

[12] Park, H. M., and D. H. Cho, 1996. The use of the Karhunen-Loeve de-400

composition flor the modeling of distributed parameter systems, Chem.401

Eng. Sci., 51, 1, 81-98.402

[13] Robinson, B. A., 2004. Particle tracking model and abstraction of trans-403

port processes, Yucca Mountain Project Analysis/Model Report, MDL-404

NBS-HS-000020, Rev00.405

[14] Tompson, A.F.B. and Gelhar, L.W. 1990. Numerical simulation of solute406

transport in three-dimensional, randomly heterogeneous porous media.407

Water Resour. Res., 26(10), 2541-2562.408

14



[15] Vermeulen, P. T. M., A. W. Heemink, and C. B. M. Te Stroet, 2004.409

Reduced models for linear groundwater flow models using empirical or-410

thogonal functions, Adv. Water Resour., 27, 57-69.411

[16] Zyvoloski, G. A., B. A. Robinson, Z. V. Dash, and L. L. Trease, 1997.412

Summary of the models and methods for the FEHM application - A413

finite-element heat- and mass-transfer code, Los Alamos National Lab-414

oratory Report LA-13307-MS, Los Alamos, New Mexico.415

15



Figure Captions416

Figure 1. Selected snapshots computed from Equ. (15) for the one-417

dimensional solute transport with linear sorption.418

Figure 2. The eigenvalues and their accumulative value as functions of419

modes for the one-dimensional solute transport with linear sorption.420

Figure 3. Selected basis functions for the solute transport with linear421

sorption.422

Figure 4. Accuracy of computed snapshots using the model reduction423

method with different numbers of basis functions for the one-dimensional424

solute transport with linear sorption.425

Figure 5. Comparison of exact solution and reduced model solution at426

time t = 75 days and 525 days for the one-dimensional solute transport with427

linear sorption.428

Figure 6. Selected snapshots computed from (16) th eone-dimensional429

solute transport with pulse input.430

Figure 7. The eigenvalues and their accumulative value as functions of431

modes for the one-dimensional solute transport with pulse input.432

Figure 8. Selected basis functions for the one-dimensional solute trans-433

port with pulse input.434

Figure 9. Accuracy of computed snapshots with different numbers of435

basis functions using the model reduction method for the one-dimensional436

solute transport with pulse input.437

Figure 10. Comparison of exact solution and reduced model solution at438

time t = 75 days and 275 days for the one-dimensional solute transport with439

pulse input.440

Figure 11. Gaussian random fields for (a) logKs, and (b) Kd.441

Figure 12. Comparison of true concentration fields and modeled fields442

using the reduced model at two elapsed times for the case with heterogeneities443

in both the permeability and the distribution coefficient.444

Figure 13. Comparison of true concentration fields and modeled fields445

using the reduced model for two elapsed times for the case with heterogeneous446

permeability field but without sorption (Kd = 0).447
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